Stark's Conjectures and Hilbert's Twelfth Problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stark's Conjectures and Hilbert's Twelfth Problem

We give a constructive proof of a theorem given in [Tate 84] which states that (under Stark’s Conjecture) the field generated over a totally real field K by the Stark units contains the maximal real Abelian extension of K. As a direct application of this proof, we show how one can compute explicitly real Abelian extensions of K. We give two examples. In a series of important papers [Stark 71, S...

متن کامل

A Resolution to Hilberts First Problem

The continuum hypothesis (CH) is one of and if not the most important open problems in set theory, one that is important for both mathematical and philosophical reasons. The general problem is determining whether there is an infinite set of real numbers that cannot be put into one-to-one correspondence with the natural numbers or be put into one-to-one correspondence with the real numbers respe...

متن کامل

The Multiple Permutation Problem and Some Conjectures

In this paper, we proposed an interesting problem that might be classified into enumerative combinatorics. Featuring a distinctive two-fold dependence upon the sequences’ terms, our problem can be really difficult, which calls for novel approaches to work it out for any given pair (m,n). Complete or partial solutions for m = 2, 3 with smaller n’s are listed. Moreover, we have proved the necessa...

متن کامل

A Note on Hilberts Operator

LEMMA L 1 When Kp< oo, then &fis a continuous (bounded) linear transformation with both domain and range Lp( — <*> , oo ), and § 2 / = — ƒ. LEMMA 2. Whenf(t)ÇzLi(— <*>, oo), then §ƒ exists for almost all x in ( — oo , co ), but does not necessarily belong to Li(a, b), where a, b are arbitrary numbers(— oo ^a<b^ oo) ; however (l+x)~\ &f\ÇzLi(— oo , co) when 0<q<l. When f and ^f belong to Li(— oo...

متن کامل

On the History of Hilbert’s Twelfth Problem A Comedy of Errors

Hilbert’s 12th problem conjectures that one might be able to generate all abelian extensions of a given algebraic number field in a way that would generalize the so-called theorem of Kronecker and Weber (all abelian extensions of Q can be generated by roots of unity) and the extensions of imaginary quadratic fields (which may be generated from values of modular and elliptic functions related to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Experimental Mathematics

سال: 2000

ISSN: 1058-6458,1944-950X

DOI: 10.1080/10586458.2000.10504650